Probleme de informatică
  Clasa a IX-a
1. Elementele de bază ale limbajului C++ (instructiunile limbajului) (46)
2. Subprograme predefinite (1)
3. Tablouri (145)
4. Fişiere text (2)
5. Algoritmi elementari (104)
6. Probleme diverse (12)
  Clasa a X-a
1. Subprograme definite de utilizator (87)
2. Şiruri de caractere (42)
3. Înregistrări (26)
4. Recursivitate (57)
5. Combinatorica (0)
6. Alocarea dinamică a memoriei (2)
7. Liste înlănţuite (25)
8. Algoritmul lui Lee (1)
  Clasa a XI-a

1. Metoda "Divide et impera" (12)
2. Metoda Backtracking (85)
3. Metoda Greedy (6)
4. Programare dinamică (18)
5. Grafuri neorientate (37)
6. Grafuri orientate (38)
7. Arbori (33)

  Clasa a XII-a
1. Elemente de baza C# (32)
2. POO in C# (13)
3. C# - Windows Form Application (24)
4. Admitere UBB (12)

   Home » Backtracking Bacalaureat 2016   |   Variante bacalaureat 2009   |   Atestat  |   Olimpiada       
Noutăţi
Subiecte admitere la Facultatea de informatica UBB Cluj-Napoca
Subiecte bacalaureat 2010-2017
Bacalaureat 2017 - competenţe digitale
C# - Windows Form Application - exemple
Modele de proiecte de atestat
Bacalaureat 2017
Subiecte si rezolvări 2010-2017
Rezolvari variante bacalaureat 2009
Competenţe digitale
Examen atestat
Rezumat documentatie
Teme proiect
php.doc
css.doc
exemple_php_si_css.rar
Modele de proiecte de atestat
Subiecte atestat 2014 CNLR
Olimpiada
Clasele V-VI
Clasele VII-VIII
Clasa a IX-a
Clasa a X-a
Clasele XI-XII
Noţiuni teoretice
Metode de sortare
Metoda backtracking


Fiind data o tabla de sah de dimensiunea nxn si un cal īn coltul stānga sus al acesteia, se cere sa se afiseze toate posibilitatile de mutare a acestei piese de sah astfel īncāt sa treaca o singura data prin fiecare patrat al tablei. O solutie va fi afisata ca o matrice nxn īn care sunt numerotate sariturile calului.
Exemplu, pentru n=5, o solutie este
1 14 9 20 23
10 19 22 15 8
5 2 13 24 21
18 11 4 7 16
3 6 17 12 25


#include<fstream.h>
const int dx[8]={-1,1,2,2,1,-1,-2,-2};
const int dy[8]={-2,-2,-1,1,2,2,1,-1};
int a[10][10],n;
ofstream f("cal.out");

void afis()
{ int i,j;
  for(i=1;i<=n;i++)
  { for(j=1;j<=n;j++) f<<a[i][j]<<" ";
    f<<endl;
  }
 f<<endl;
}

int inside(int i,int j)
{
   return i>=1 && i<=n && j>=1 && j<=n;
}

void back(int i, int j, int pas)
{ int k,inou,jnou;
  a[i][j]=pas;
  if (pas==n*n)  afis();
  else for(k=0;k<8;k++)
	 { inou=i+dx[k];
	   jnou=j+dy[k];
	   if (inside(inou,jnou) && a[inou][jnou]==0)
	       back(inou,jnou,pas+1);
	 }
  a[i][j]=0;
}

void main()
{  cin>>n;;
   back(1,1,1);
}


  Clasa a IX-a
1. Elementele de bază ale limbajului C++ (instructiunile limbajului) (46)
2. Subprograme predefinite (1)
3. Tablouri (145)
4. Fişiere text (2)
5. Algoritmi elementari (104)
6. Probleme diverse (12)
  Clasa a X-a
1. Subprograme definite de utilizator (87)
2. Şiruri de caractere (42)
3. Înregistrări (26)
4. Recursivitate (57)
5. Combinatorica (0)
6. Alocarea dinamică a memoriei (2)
7. Liste înlănţuite (25)
8. Algoritmul lui Lee (1)
  Clasa a XI-a

1. Metoda "Divide et impera" (12)
2. Metoda Backtracking (85)
3. Metoda Greedy (6)
4. Programare dinamică (18)
5. Grafuri neorientate (37)
6. Grafuri orientate (38)
7. Arbori (33)

  Clasa a XII-a
1. Elemente de baza C# (32)
2. POO in C# (13)
3. C# - Windows Form Application (24)
4. Admitere UBB (12)

Calculatoare si accesorii second hand
Copyright © 2009-2017 Muresan Vasile Ciprian - mcip.ro